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Bloch oscillations of Bose-Einstein condensates: Breakdown and revival
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We investigate the dynamics of Bose-Einstein condensates in a tilted one-dimensional periodic lattice within
the mean-field Gross-PitaevsKiidescription. Unlike in the linear case the Bloch oscillations decay because of
nonlinear dephasing. Pronounced revival phenomena are observed. These are analyzed in detail in terms of a
simple integrable model constructed by an expansion in Wannier-Stark resonance states. We also briefly
discuss the pulsed output of such systems for stronger static fields.
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I. INTRODUCTION This nonlinear system shows basically all the features

T L ; found in the analysis of the linear equation, such as Bloch
Despite its apparent simplicity, the dynamics of quantumoscillations of the condensaf®,10]. In addition, the nonlin-

articles in periodic structures is full of surprises, eveninthe >~ . o .
P P P arity introduces new effects, such as solitonlike motion,

one-dmensmqal case. Bloch waves, which are delocallzeﬁonlinear Zener tunnelinfl1,12], and “classically” chaotic
states in a lattice leading t'o' transpor't, havg peen known fO5Iynamics[13—1ﬂ. This system has been analyzed with vari-
almost a century. If an additional static fididis introduced, ous methods: see, e.§L16—18.
thes_e states k_)ecome localized and counte_rlntmnvely trans- Recent experiments demonstrated a breakdown of Bloch
port is dramatically reduced. Instead an oscillatory motion isyscillations of a BEC in an optical lattice due to nonlinear
found, the famous Bloch oscillations. These hav®ch)  interactiong19]. The dynamical instability disrupts the regu-
frequencywg=Fd/% whered is the lattice constant and they |ar motion of Bloch oscillations whenever the BEC reaches
extend over a spatial interval/F whereA is the width of  the edge of the Brillouin zone. This instability is closely
the first Bloch band. During the last decade these Bloch osrelated to the nonlinear Zener tunneling discussed in Sec. I
cillations have been experimentally observed, which trig-However, in the experimerfi9] as well as in corresponding
gered a renewed theoretical interéftr recent reviews see theoretical studies[12,20-22, the mean-field potential
[1-4)). gl¥(x)| is of the same strength as the optical lattice.

For stronger fields decay has to be taken into account. So The present article focuses on Bloch oscillations in the
this simple picture must be replaced by introducing cou~+egime where the mean-field potential is weak but not neg-
plings to higher bands or, alternatively, by a description inligible in comparison to the periodic potential. In this situa-

terms of Wannier-Stark resonances. More details can b#on nonlinear dephasing is the decisive mechanism causing
found in the review articlg5]. a breakdown of Bloch oscillations. In fact we will show that

namics described above are cold atoms in optical latticesCl€ly by nonlinear dephasing in a simple integrable model,
because here the notorious difficulties met in solid state sys¥hich is introduced in Sec. Ill. Furthermore, revival phe-
tems(where, in fact, the Bloch oscillations were observed forh®mena are observed which obviously cannot be attributed
the first time[6]) are absent or, at least, can be made ver)ﬁo |'nstab|I|ty. Neverthelgsg dynamlcal' instability gannot be
small. Anderson and Kasevich did one of the first eXperi_entlrely neglected. Preliminary numerical calculations show
ments[7] with a Bose-Einstein condensatBEC) of ru- that it plays a _roIe roughly at the same _tlme scale as the
bidium atoms in an optical lattice with gravity acting as the 4eéPhasing leading to breakdown and revival. For example,
static field. They could observe a pulsed coherent output o€ Simple dephasing model predicts periodic revivals, but
atoms. only the first one is actually observablsee Fig. 6 beloy

The atoms in a BEC scatter off each other, which Of-ferSThe_lnterpIay between_dephasmg and dynamical instability is
the opportunity to study the influence of the atomic interac-SuPject to further studies.
tion on the dynamics. In a good approximation, the dynamics 1€ paper is organized as follows. In Sec. Il we present

can be described by the one-dimensional Gross-PitaevsKiSults from a numerical solution of the GPE and show non-
equation(GPB [8] linear Bloch oscillations for relatively weak fields and differ-

ent strengths and signs of the nonlinear interaction. Section
1) Il introduces our main tool, a discrete representation by an

expansion in Wannier-Stark resonance states and derives ap-
proximate results based on this approach. These results are
used to analyze the dynamical behavior of Bloch oscillations
in Sec. IV. Finally we discuss the modification of the coher-
ent pulsed output of a Bloch oscillating condensate for stron-
ger fields in Sec. V. The paper closes with some concluding
*Electronic address: korsch@physik.uni-kl.de remarks.

2
it S = (— ;—Ma§+V(X) +FXx+ 9|¢|2> b,

whereM is the atomic masg is the interaction strength, and
V(x)=V(x+d) is the periodic lattice potential.
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the wave function shown in Fig. 1.
FIG. 1. The squared modullig(x,t)|?> of the wave function for

g=0 shows the familiar Bloch oscillations. for Zener tunneling is=107*2 As shown in[11,12, the tun-
neling probability is generally enhanced due to the nonlin-
Il. NUMERICAL STUDY OF NONLINEAR BLOCH earity. Furthermore, the tunneling probability does not vanish
OSCILLATIONS even forF — 0, if the mean-field potentiad|(x)|? is of the

same order of magnitude as the periodic potentigk)

=cosx. As already mentioned we focus on the situation

where the mean-field potential is weak but not negligible in

In all numerical studies we will use a cosine potentialCor-nloarisOn to _the periodic potential. The Lgndau-Zener_tun-

V(X)=V, cog2mx/d). We furthermore use scaled units with neling probap|l!tyP calculated from a numerical propagation
0 ) of the broad initial wave packéB) showed thaP increases

d=2m, Vo=M=1 (se€[5] for more details It is worth noting lightly with |g| but we still haveP < 2x 107 for |g|<10. A
that the scaled interactior_l strength is inversely proportionaiigniﬁcam increase oP was not observed untilg|> 30.
to the depth of the potential. Hence nonlinear Landau-Zener tunneling does not play a
The GPE then reads role for the given parameters.
52 Let us start our discussion with a brief look at the Bloch
i o= (— — %+ cosx+ Fx+ g|¢|2> v (2)  oscillation for the linear casg=0. As an initial state, we use
2 a Gaussian wave packet

Due to the nonlinearity of the GP&) analytical studies
are difficult, so numerical simulations are helpful in guiding
theoretical investigations.

and we will use the valué =3.3806 for the scaled Planck

constant adapted to the experiment of Anderson and Hx,t=0)= & o (X~ x0) 2145 (3)

Kasevich[7] (see als¢23]). The nonlinearity parameter is of ’ (2m) Y4512

the orderg=1 in this experiment. Here we will extend the

analysis, however, to much stronger nonlinearities ufgto with width =40, which is projected onto the lowest Bloch

=10. This regime could be reached experimentally by in-band and afterward renormalized to unity. This wave packet

creasing the transverse confinement or decreasing the depthntains no contributions from higher Bloch bands, which

of the optical lattice. would decay rapidly(cf. the discussion ifil]). So the initial
Here we are mainly interested in the dynamics of Blochstate closely resembles the state defined in(EEd, which is

oscillations and therefore use a weak fi¢le=0.005 and  discussed in the context of the discrete model in Secs. Il and

initial states populating almost exclusively the lowest BlochlV.

band. In this case the decay is negligible. In the linear case For the time propagation a split-operator mettad] is

the band gap between the lowest and the next higher Blochsed which can also be applied to the nonlinear case. In Fig.

band for the field-free case 8=0.998 and the probability 1 we observe the familiar Bloch oscillation with a large am-

P e ——
50
& &
" " FIG. 3. Same as Fig. 1, but for
a nonlinear interactiong=+5
(left) and =5(right).
10
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FIG. 4. Expectation values of the positi¢x; and widthAx; for t/ Ty
the wave function shown in Fig. 3 for a repulsive nonlineagty
=+5. FIG. 6. Expectation valuéx), of the position and width\x, for

a repulsive nonlinearitg=+10. The inset shows a magnification of

plitude because of the weak field. Let us recall that the rethe time interval betweenTg and 167g.
gion over which the Bloch oscillation extends can be esti-
mated as\/F =~ 200~ 32X 27 within the tilted band picture, in coordinate spacgl,25]. Note that the oscillations of the
whereA=0.9994 is the width of the dispersion relatiBfw)  width Ax, for a repulsive and attractive nonlinearity are op-
in the field-free case. The numerical results confirm this esposite to each other.
timate as the top of Fig. 2 shows. As expected for such an For a stronger nonlinearity=10, as illustrated in Figs. 6
initially wide distribution in coordinate space, the width of and 7, the Bloch oscillations are damped more strongly.
the wave packet remains practically constant, varying periHowever, the oscillation does not fade completely but shows
odically with a relative amplitude of about 10(Fig. 2 bot-  a revival with a smaller amplitude after a shrinking to ap-
tom). proximately two lattice periods. A corresponding behavior is

Let us now discuss the influence of a nonlinearity, fixingobserved for the width, where the breathing amplitude of the
for the moment the nonlinear parametergat5 (repulsive  wave function first grows fast up to a time of about eight
interaction) and g=-5 (attractive interaction From Fig. 3  Bloch periods. After this time, the width remains limited and
one can observe that the Bloch oscillations continue to exisgscillates in the interval from 31 to 35 lattice periods.
at least for the short times up te= 10Tz shown in the figure. Furthermore, the oscillation ofx); shows phase jumps
In addition to the well known localization dfi(x,t)|> in the  that can be seen, e.g., in the inset of Fig. @atl4Ts. A
minima of the cosine potential, one observes a further filasimilar behavior has also been describedllifi]. This phase
mentation which is particularly pronounced for an attractivejump coincides with a minimum in the amplitude. These phe-
interaction. As shown in Fig. 4, the amplitude of the oscilla-nomena can be understood in terms of an expansion in
tion decreases and the oscillation in the width strongly in-Wannier-Stark basis functions as explained in the next sec-
creases. tion.

Also shown in Figs. 4 and 5 is the time dependence of the
width Ax; of the wave packet. In sharp contrast to the tiny lIl. WANNIER-STARK BASIS SET EXPANSION
oscillations of the width in the linear cageee Fig. 2 we
find here very pronounced oscillations which are rapidly
growing(as already described by Holthgus$]). Such a phe-
nomenon is known agreathingand is exhibited in the linear

An alternative approach to a direct numerical integration
of the GPE is an expansion in an adequate discrete basis such

system by wave packets that are initially strongly localized 40
0 35,
& -10
2 -20 & 30F 7
¢ S
-301 . ‘ ‘ _ ) ) x
40— : : < 257 1
& 30
q 20% 1
X 20
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FIG. 5. Same as Fig. 4, but for an attractive nonlineagty FIG. 7. Width Ax; of the wave packet shown in Fig. 6 for a
=-5. repulsive nonlinearityy=+10.
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as for example the ground states of single potential wells ch= V"p—ei‘Pn_ (10)
[13,26. In this work we adopt a different approach, follow-

ing [14,18), and expand the wave function in the resonancelhe imaginary parts of the coupling tensgy, are negli-
eigenstates of the linear system, the so-called Wannier-Sta@ble and so one arrives at the coupled equations

statesWV, ,(x) which are eigenstates of the linear Hamil- 1/2
tonian HO:' figy=—2mFn—gp,>, Xk|m<w>
kim n
Ho‘I’a,n(X) - ga’n\I’a'n(X), @ X COLPlin + Pmin = Pien ~ Pn), (11
where « is the ladder index and is the site index. The
energies form the Wannier-Stark ladder o 2 PrenPlenPrrn |
Pn= 29pn2 Xkim\ = 3
Ean=Eqo+ 2mFN. (5 Kim n
X SIN(@r4n+ Cmen = Pien = @n)- (12)

The Wannier-Stark states extend over several periods of the
potential(see remark27] and review[5] for more informa-  If the initial state is broad, populating about 20 wells, the
tion). This approach has proven to be extremely convenien@mplitudesp,(t=0) are small. Because gf,~ p}, this im-
to describe the dynamics in tilted optical lattices in the linearplies that the amplitudes, change only slowly in time com-
case, especially for higher field strengfss23]. pared to the phases, and can be assumed_ to be constant.
Up to Sec. V, we will restrict the discussion to small field  Furthermore we reduce the expression ¢qrto the most
strengthsF. Then one can neglect decay and Landau-Zeneimportant contributions. Numerically examining thggm
tunneling and use the lowest ladder0 only; henceforth shows that the dominating terms a¥goo Xkko=Xkok» and
the indexa is omitted. Also neglecting decay, the imaginary xox Which is not unexpected considering E8). It can also
part of the energy, is set to zero. Plugging the expansion be argued(and verified numericallythat the terms in Eq.
PX, 1) ==cn(HP(X) into the GPE(1) leads to a set of (11) that have a nonzero argument of the cosine have little

coupled ordinary differential equations: importance, as their contributions average out. This leaves
the terms includingyggo and xiw=Xxkox and finally leads to
iﬁ% [\ E (Eg+ 2mFM)Cr ¥ + g%ﬂ [oVoTom 0 O\ hip = - 2FNn - Qe (13)
(6)  with
The e_nerg}éo only Ieao!s to a global phase factor and hence Y= Xooo+ 22 Xkokpn+k- (14)
is omitted in the following. The Wannier-Stark stat¥s are k#0 Pn
orthogonal to their left eigenstat&h1 for m# n. Neverthe- _ .
less, since we neglect the resonance properties of the systeruations(13) are integrated to
we can ide_n.tify left and _righ_t eigenvectors; ie., assume that D) =pn(0),  @n(t) = oyt (15)
Hg is Hermitian. So multiplying Eq(6) by ¥, and integrat- .
ing yields with
. * fhw, == 27FN = gynon. (16)
ific, = 2mFne, + 92 XEIkaCICw (7 . .n . N .
kim Note that this solution is exact far=0. Numerical calcula-
_ ) tions show that one can safely neglect the dependengg of
with the coupling tensor on the indexn and sety,~ y. For the given parameters Eq.
(14) yields y,= y,=0.278. However, the best fit with the
Xy = J W ()W (X)W (X)W (X)X, (8)  results from a wave packet propagation are obtainedyfor
=0.15.

This admittedly quite crude approximation shows very
ood agreement with an exact numerical solution. In Figs. 8
nd 9 the approximatiol5) is compared with the results
obtained by a wave packet propagation using the split-

. . operator metho@24]. A normalized Gaussian initial distribu-
Iﬁcn = 2'77'|:ncn + 92 XkImCi+nCl+nCrmens (9) tion with coefficients
kim

two indices. Due to the discrete translational invariance o

which is symmetric under the exchange of its first and IasE
the Wannier-Stark stateg, (x) =W (x—2mn) one finds

2
. C ~ e G2 =20, 17
defining Xiim= X ”

Though not suited for direct numerical calculations be-is used which closely resembles a Gaussian wave packet pro-
cause of the triple infinite sum, E¢Q) provides a basis for jected onto the lowest Bloch band in configuration space.
further approximations. In the following we will reduce it to The dynamics for a moderate nonlineargy1 is well de-

a simple integrable model, which nevertheless captures imscribed by Eq(15), only the growth of the width is some-
portant features of the dynamics. To this end we decomposghat underestimated. Fg=10 the approximatiori1l5) be-
the coefficients,, into phase and amplitude comes less accurate. In particular it overestimates the revival
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FIG. 8. Bloch oscillations: Expectation value of positioe, of FIG. 9. As Fig. 8, but for a strong nonlinearigs 10.
the wave packet for a moderate nonlineagtyl. The propagation
was done with the split-operator meth@hshed ling respectively First we briefly reconsider the linear case. er0 Egs.
with approximation(15) (solid line). (15) reduce to

of the Bloch oscillation and underestimates the growth of the Pa(t) =pn(t=0) and p,(t) = - 27Fnt/f. (19

W!)?:Qn?ffég?u\:veas\/?atﬂizzft. LT;IinVESX/eerI, '_t tsr,:le” gsg;ur(;‘:’]éhreew\l']'he Wannier-Stark function®7] ¥, are related by a spatial
p I 9 . y: y Franslation V., (xX)=Wy(x=27n). In momentum space this
of the oscillations, the phase jump aroutwl14T; and the reads

breathing of the wave function.
The systematic growth of the width of the wave packet is W (K) = €12y (K) (20)
mainly due to a broadening of the amplitude distributign "
and therefore clearly not included in approximatittb).  and the time evolution of the wave function in momentum
Similarly, the filamentation of the wave pacKef. Fig. 3 is space is
also due to the dynamics of the amplitude distribufigrand
hence not included in our simple model. (k,t) = To(k) > \““E exg—i2mn(k+ Ft/#)]
To discuss the broadening of the wave function we briefly n
reintroduce the time dependence of e Again we reduce —
the triple sum to keep the calculations feasible. Note that the ~ Wo(KC(k+Ft/h), (21)

terms are oscillating due to the sine. Using approximationne lecting a alobal phase. Thus the wave function is the
(15) we see that fok=I+mthe terms proportional t6 in the 9 9ag P :

argument of the sine cancel and hence the sine oscillatepsmdUCt of a t|me-|ndepend(3nt functioho(k) and the dis-

most slowly. Thus we approximate the dynamics of the amcrete Fourier transformatio€(k) of the amplitudesypy,

plitudesp, by evaluated at the poirk+Ft/#.
1/2
. p Pl+nP,
fipy = ngﬁE Xl+m,l,m<w>
I,m Pn
X SIN(@14n + Pmen = Plemen = Pn)s (18)

where the sum can be truncatedlgfm|=30. Equation(18)

for p and Eq.(13) for ¢ are now solved numerically with
v=0.15 and the initial conditioil7). The results displayed
in Fig. 10 show that this model captures the growth of the
width of the wave packet. We will, however, not go into
details here and return to the approximatid®) to discuss
the dynamics of Bloch oscillations.

IV. ANALYSIS OF THE DYNAMICAL BEHAVIOR 100 5 1'0 1'5 20

Further insight can be provided by a closer look at the
dynamics of the wave function in momentum space. This can FIG. 10. Bloch oscillations for a strong nonlineariy: 10. The
be achieved with the approximate time evolution of the ex-propagation was done with the split-operator mettdashed ling
pansion coefficients,, derived in the previous section. and with approximatior{18) (solid line).
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FIG. 11. Bloch oscillations in momentum space. The wave func- 0 > o ]
tion |#(k,t)| shown fort=0 (solid line) moves uniformly under the Kk

envelope of the Wannier-Stark functigiry(k)| (dashed ling B
FIG. 12. Time evolution of the functio(k,t) in Eq. (22) for
The functionC(k) is periodic in momentum spac€(k  9=10. The functionC is scaled a€(0,0)=1.

+n):E(k) for ne Z. Thus the functior(N:(k+Ft/ﬁ) is peri- ) ) .
odic in time with the Bloch periodlz=#/F. For a broad coordinate space. For even 'Of‘ge_f times the coeff|C|_e_nts
Gaussian distribution of the amplitudpgs the discrete Fou- gﬁgrlﬂzevﬁgtmhp;?;e:jya;npde;he oscillations in both the position
rier transformC(k) is a comb function with narrow peaks at In order to understand tHe revivals and the phase jumps in
k:g. ) ) i ole vi f the d o the oscillations ofx);, we need to look at the time evolution
0 one arrives at a simple view of the dynamics in mo- ~ ~
P ~ y ) of the functionC(k,t). In Fig. 12 the functionC(k,t)| for

mentum space: The comb functltﬁ(k) ‘moves uniformly g=10 is plotted at time$=0, t=6Tg, t=12T, andt=18Ts.
under the envelop@,(k), as illustrated in Fig. 11. In OO~ Tha gunamics of the expansion coefficients was calculated
Qmate space this periodic motion appears as a Bloch oscillgy;i, Eq. (15) [Eq. (23)]. One observes that the initially nar-
tion [1]. _ row peaks are broadened and an oscillatory structure devel-

In the nonlinear case one has to evaluate ops with two maxima at the edges of the band populated by

B — . B ~ |C(k,t)|. These maxima eventually merge, leading to a re-
k) = TO(k)% Voo exp= i[2mmk = gn(H) ]} = Wo(KIClk,t) vival of the Bloch oscillations. The new maximum after the

merger is displaced byk=0.5 in comparison to the linear

case and hence the phase of the Bloch oscillations is re-
versed. This maximum broadens again, leading to a periodic
breakdown and revival. The phase of the Bloch oscillations
is reversed after each breakdown and the amplitudes of the

(22)

instead of Eq(21). The time evolution of the phases is ap-
proximated according to Eq15):

O =t with fiw, = - 27Fn— (23) revivals decrease. However, these further revivals are ob-
Pnlt) = @n @n= T em 97n: served only within the approximatidd5) andnotin a wave
and the amplitudes are assumed to be Gaussian packet propagation. . .
Now we consider the time dependence of the expectation
_ _12/262 values of position and width. These quantities can be evalu-
pa(t) =p,~ € . (24

ated analytically in the linear cage=0 using a tight-binding
As in the linear case, the static field termm#n in Eq. (23) ~ @PProximation1,25]. In this approximation the expectation
for the frequency leads to a uniform motion of the function value of the position oscillates harmonically with the Bloch
~ . . requencywg,
C(k,t) in momentum space. The nonlinear tergyyp, leads
to a dephasing of the coefficiertsand broadens the Fourier (X);=x+ A cog wgt) (25
transform C(k,t). This dephasing causes a damping of the .
Bloch oscillations in coordinate space. and amplitude

The oscillations of the widthAx;, the breathing, can also A o 2o

be understood with this approach. In the linear case such A=Ee_2w Apin, (26)
breathing occurs for wave functions that are initially strongly
localized in coordinate space and thus have a broad momegmere Ap is the width in momentum space ard is the
tum distribution. As explained, the nonlinear term leads to &andwidth of the dispersion relatidB(x) in the field-free
broadening of the functio@(k,t) and hence to a broadening case. For a small nonlinearity the broadening of the wave
of the wave function in momentum space and breathing ifunction in momentum space due to the nonlinearity happens

036625-6
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FIG. 13. Functior|C(k,t)| [Eq. (27)] for gt=90Tg and y=0.15.
The integral was evaluated numericalsolid line) and using the
stationary phase methddashed ling

slowly compared to the Bloch oscillations. Thus we can as-
sume tha(x), still executes damped harmonic oscillations
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. 202\ L4
C(k,t)z( ;2 ) (

wherez, are the two solutions of the equation

gé-
V1-z

il
V-2,

+

>, (31)

ze?= (2770:12/,8)2 (32

and the abbreviations, =-2mok(z:/2+7,?) were used. As

an example the functio‘f:(k,t)\ is plotted in Fig. 13 forgt
=90Tg and y=0.15.

Estimating the momentum width ap~7|k | one arrives
at

lvg|
(277)3/—202(31/2t. (33

Thus the damped Bloch oscillations in coordinate space are
described by

Ap, =

2

34
4mer’o? (34

_ A
Xy =x+—exp -

oF )cos(wBt)

with the amplitudg26), where the damping is determined by 5ccording to Eq(25). The amplitude decreases exponentially

the slowly increasing momentum widtkp;.

According to EQ.(22) we can estimate the momentum
width Ap, by the width of the peaks of the functid®(k,t).
For a broad distribution of the coefficients, as assumed
throughout this paper, the sum in E82) can be replaced by
an integral:

Ck,t) = f w\e’aexp{—i[ank— eu®dn.  (27)

This expression is valid fok| < 0.5, otherwiseC(k,t) is de-
termined by its periodicity. The amplitudgs, and phases
¢n(t) are approximated by Eq15), where the amplitudes;,
are normalized as

: 1
P mo?

e—n2/2(72

(28)
We note thatC(k,t) depends on the momentuin only
through the expressiok=k+Ft/#, reflecting the uniform
motion in momentum space due to the static field:

+oo B
E(T() = 4’1_ e—n2/4aze—i(2,Tkn+ﬁe—n2/202)dn
\2ma?)

with B=ygt/ (V2moh).

(29)

The integral(27) can be evaluated using the stationary

phase approximation. However, there exists only a fikite
interval for which stationary points exist. F{k > |k with

__B

2mwaet

7 (30)

with —g?t? in agreement with the estimate given[it3].
Furthermore we can calculate approximately the time up

to the first rephasing of the coefficients and thus the first

revival of the Bloch oscillations. This revival occurs if the

outer peaks oE(k,t) meet atk=n+1/2,n e 7, as illustrated

in Fig. 12. Therefore the first rephasing and revival occurs
for k.=0.5 which yields a revival time

2 3/281/2ﬁ0’2
rev = (W)W (35
For g=10 andy=0.15 one obtains
trey= 17T, (36)

in reasonable agreement with the revival of Bloch oscilla-
tions observed numerically for the wave packet propagation
shown in Fig. 6.

For very long times the coefficients, dephase com-
pletely. We can therefore estimate the position expectation
value by approximating the wave function as an incoherent
sum of the basis states. Assuming that the amplitydese
constant in time according to E¢L3) one has

() =2 pol WX W) (37)

Using the translational properties of the Wannier-Stark states
(cf. [5]) one arrives at
(X0 = (WolX| W) + 22 npy. (38)
n
The amplitudes of the initial stat&7) are symmetric around
n=0 and hence this approximation yiel@s..,~ (¥ |x|¥)
=-10.5X 2. This estimation fairly agrees with the numeri-

cal results displayed in Fig. 6. As argued above, the system-
atic growth of the width of the wave packet is mainly due to

the integral vanishes in the simple stationary phase approxis broadening of the amplitude distributippand hence can-

mation[30]. For [K < |k one obtains

not be explained using the simple model discussed here.
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V. STRONG STATIC FIELD AND DECAY 2

An expansion into Wannier-Stark resonances is also very
helpful in order to understand the dynamics and decay in
strong static fields. In the following we will discuss the dy- 1
namics for the parameters=3.3806 and==0.0661, corre-
sponding to the experiment of Anderson and Kase{/idhA
detailed discussion of this experiment in terms of Wannier-

Stark resonances, but neglecting the nonlinearity, can be A m ﬂ
')
-4 -3 -2

(k) [®

found in[23]. Thus we will only briefly discuss the influence
of the nonlinearity on the pulse shape. 1 1
For a field strength oF=0.0661 decay cannot be ne-
glected any longer. One has to take into account that the ,
resonance states eventually diverge exponentiallyfor k 0
— -, Hence, a wave function of the for(22) is not nor- k
malizc’?lble. Neverthel_ess,_ the _r_estriction to the ground Fig 14, pulsed output for different nonlinearitigs 0, -5, 5,
Wannier-Stark ladder is still sufficient. and 10(from top to bottom. The wave functiong(k,t)|? is dis-
As described if23] (see also remark27]) one can solve  played fort=9.1T.
the problem of normalization by introducing truncated reso-
nance states defined by

|
A
A
AL

-1

finds a characteristic deformation of the pulses in coordinate
TE(K) = Ok + K) W (k). (39)  space.

The Heaviside functio®(k+K) truncates the resonances at
-K. Provided thatK| is large enough, the time evolution of VI. CONCLUSIONS

these states is given by In this article we first investigated Bloch oscillations of

‘Pﬁ(k,t) =0+ K+Ft/A)¥,(k,1). (40 BECs by numerical solutions of the Gross-Pitaevskii equa-

o o . tion and demonstrated a revival of Bloch oscillations after an

If the support of the initial wave function is bounded in jnjtia| preakdown. These findings have been further analyzed

momentum space bik| <|K|, we can expand it into a basis ;ia giscretizing the GPE in a Wannier-Stark basis set expan-
of truncated resonances. The dynamics of this state is theg),, Using these resonance states one can easily compare

given by the linear and nonlinear cases. This comparison leads to a
_ = better understanding of the nonlinear features of BECs in

Yk D) = Ok + K+ FUR)Wo(k HCK D, (41) optical lattices. It allows us to derive a simple integrable

with Wo(k,t)=exp-i&t/ ) Vo(Kk) instead of Eq(22). model (15) which can explain the nonlinear phenomena of

For a coherent initial distribution of a sufficient width breakdown and revival of the Bloch oscillations. This ap-
¢, ~exd-n?/(20)?] with o>1, the functionC(k,t) is a  Proach, unlike the tight-binding approximation, works as
comb function in the linear case, leading to a pulsed outputVe!l for strong Stark fields.

) o~ Many interesting questions are left open and deserve fu-

The pulse shape_ given by the functl_ﬁhbrqadens and_de- . ture studies, as for example the followin@) The effects
forms un_der the m_fluence_ of the non_llnearlty as.deslcnb(.ad Mhduced by the nonlinearity for Bloch oscillations in two-
the previous sect!omcf. Fig. 19. This deformation is di- dimensional lattices, where recently novel effects concerning
rectly'ot.)servable in the pulsgd output. ... . the extreme sensitivity on the field direction with respect to

_ Th_|s is demonstrglted in F_|g. 14 fpr a coherent initial dls-the lattice have been fouri®,28]. (b) For BECs in tilted
trlbutlon cn.~exp(—n /402.) with a width (.)f 0215/?' The optical lattices a classically chaotic behavior has been re-
time evolution was again calculazte_d using a split-operato,, teq[14]. These interesting findings deserve further stud-
method. The wave functiofy(k,t)|” is plotted at a tim& o5 "o example the correspondence of the emergence of
=9.1Tg for four different values of the nonlineariy=0, =5, ha0s with the loss of stability of the GPE solutiofe. It is
5, and 10. The broadening of the peaks with increasig 5 entirely open question how the nonlinearity influences the
and the characteristic double-peak structure can clearly bgenayior of a driven Wannier-Stark system, e.g., the stabiliz-

seen. . L . . ing phenomena found for an additional harmonic driving
The resulting wave function in coordinate space is a S€r5,29.

quence of pulses at the points

F...
X=x= (1 iTo), (42) ACKNOWLEDGMENTS
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