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We investigate the dynamics of Bose-Einstein condensates in a tilted one-dimensional periodic lattice within
the mean-fieldsGross-Pitaevskiid description. Unlike in the linear case the Bloch oscillations decay because of
nonlinear dephasing. Pronounced revival phenomena are observed. These are analyzed in detail in terms of a
simple integrable model constructed by an expansion in Wannier-Stark resonance states. We also briefly
discuss the pulsed output of such systems for stronger static fields.
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I. INTRODUCTION

Despite its apparent simplicity, the dynamics of quantum
particles in periodic structures is full of surprises, even in the
one-dimensional case. Bloch waves, which are delocalized
states in a lattice leading to transport, have been known for
almost a century. If an additional static fieldF is introduced,
these states become localized and counterintuitively trans-
port is dramatically reduced. Instead an oscillatory motion is
found, the famous Bloch oscillations. These have asBlochd
frequencyvB=Fd/" whered is the lattice constant and they
extend over a spatial intervalD /F whereD is the width of
the first Bloch band. During the last decade these Bloch os-
cillations have been experimentally observed, which trig-
gered a renewed theoretical interestsfor recent reviews see
f1–4gd.

For stronger fields decay has to be taken into account. So
this simple picture must be replaced by introducing cou-
plings to higher bands or, alternatively, by a description in
terms of Wannier-Stark resonances. More details can be
found in the review articlef5g.

One of the most interesting systems for exploring the dy-
namics described above are cold atoms in optical lattices,
because here the notorious difficulties met in solid state sys-
temsswhere, in fact, the Bloch oscillations were observed for
the first timef6gd are absent or, at least, can be made very
small. Anderson and Kasevich did one of the first experi-
ments f7g with a Bose-Einstein condensatesBECd of ru-
bidium atoms in an optical lattice with gravity acting as the
static field. They could observe a pulsed coherent output of
atoms.

The atoms in a BEC scatter off each other, which offers
the opportunity to study the influence of the atomic interac-
tion on the dynamics. In a good approximation, the dynamics
can be described by the one-dimensional Gross-Pitaevskii
equationsGPEd f8g

i" ]tc = S−
"2

2M
]x

2 + Vsxd + Fx + gucu2Dc, s1d

whereM is the atomic mass,g is the interaction strength, and
Vsxd=Vsx+dd is the periodic lattice potential.

This nonlinear system shows basically all the features
found in the analysis of the linear equation, such as Bloch
oscillations of the condensatef9,10g. In addition, the nonlin-
earity introduces new effects, such as solitonlike motion,
nonlinear Zener tunnelingf11,12g, and “classically” chaotic
dynamicsf13–15g. This system has been analyzed with vari-
ous methods; see, e.g.,f16–18g.

Recent experiments demonstrated a breakdown of Bloch
oscillations of a BEC in an optical lattice due to nonlinear
interactionsf19g. The dynamical instability disrupts the regu-
lar motion of Bloch oscillations whenever the BEC reaches
the edge of the Brillouin zone. This instability is closely
related to the nonlinear Zener tunneling discussed in Sec. II.
However, in the experimentf19g as well as in corresponding
theoretical studiesf12,20–22g, the mean-field potential
gucsxdu is of the same strength as the optical lattice.

The present article focuses on Bloch oscillations in the
regime where the mean-field potential is weak but not neg-
ligible in comparison to the periodic potential. In this situa-
tion nonlinear dephasing is the decisive mechanism causing
a breakdown of Bloch oscillations. In fact we will show that
the breakdown and other dynamical effects can be explained
solely by nonlinear dephasing in a simple integrable model,
which is introduced in Sec. III. Furthermore, revival phe-
nomena are observed which obviously cannot be attributed
to instability. Nevertheless dynamical instability cannot be
entirely neglected. Preliminary numerical calculations show
that it plays a role roughly at the same time scale as the
dephasing leading to breakdown and revival. For example,
the simple dephasing model predicts periodic revivals, but
only the first one is actually observablessee Fig. 6 belowd.
The interplay between dephasing and dynamical instability is
subject to further studies.

The paper is organized as follows. In Sec. II we present
results from a numerical solution of the GPE and show non-
linear Bloch oscillations for relatively weak fields and differ-
ent strengths and signs of the nonlinear interaction. Section
III introduces our main tool, a discrete representation by an
expansion in Wannier-Stark resonance states and derives ap-
proximate results based on this approach. These results are
used to analyze the dynamical behavior of Bloch oscillations
in Sec. IV. Finally we discuss the modification of the coher-
ent pulsed output of a Bloch oscillating condensate for stron-
ger fields in Sec. V. The paper closes with some concluding
remarks.*Electronic address: korsch@physik.uni-kl.de
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II. NUMERICAL STUDY OF NONLINEAR BLOCH
OSCILLATIONS

Due to the nonlinearity of the GPEs1d analytical studies
are difficult, so numerical simulations are helpful in guiding
theoretical investigations.

In all numerical studies we will use a cosine potential
Vsxd=V0 coss2px/dd. We furthermore use scaled units with
d=2p, V0=M =1 sseef5g for more detailsd. It is worth noting
that the scaled interaction strength is inversely proportional
to the depth of the potential.

The GPE then reads

i" ]tc = S−
"2

2
]x

2 + cosx + Fx + gucu2Dc s2d

and we will use the value"=3.3806 for the scaled Planck
constant adapted to the experiment of Anderson and
Kasevichf7g ssee alsof23gd. The nonlinearity parameter is of
the orderg<1 in this experiment. Here we will extend the
analysis, however, to much stronger nonlinearities up tougu
=10. This regime could be reached experimentally by in-
creasing the transverse confinement or decreasing the depth
of the optical lattice.

Here we are mainly interested in the dynamics of Bloch
oscillations and therefore use a weak fieldsF=0.005d and
initial states populating almost exclusively the lowest Bloch
band. In this case the decay is negligible. In the linear case
the band gap between the lowest and the next higher Bloch
band for the field-free case isd=0.998 and the probability

for Zener tunneling is<10−12. As shown inf11,12g, the tun-
neling probability is generally enhanced due to the nonlin-
earity. Furthermore, the tunneling probability does not vanish
even forF→0, if the mean-field potentialgucsxdu2 is of the
same order of magnitude as the periodic potentialVsxd
=cosx. As already mentioned we focus on the situation
where the mean-field potential is weak but not negligible in
comparison to the periodic potential. The Landau-Zener tun-
neling probabilityP calculated from a numerical propagation
of the broad initial wave packets3d showed thatP increases
slightly with ugu but we still haveP,2310−6 for uguø10. A
significant increase ofP was not observed untilugu.30.
Hence nonlinear Landau-Zener tunneling does not play a
role for the given parameters.

Let us start our discussion with a brief look at the Bloch
oscillation for the linear caseg=0. As an initial state, we use
a Gaussian wave packet

csx,t = 0d =
1

s2pd1/4s̃1/2e−sx − x0d2/4s̃2
s3d

with width s̃=40p, which is projected onto the lowest Bloch
band and afterward renormalized to unity. This wave packet
contains no contributions from higher Bloch bands, which
would decay rapidlyscf. the discussion inf1gd. So the initial
state closely resembles the state defined in Eq.s17d, which is
discussed in the context of the discrete model in Secs. III and
IV.

For the time propagation a split-operator methodf24g is
used which can also be applied to the nonlinear case. In Fig.
1 we observe the familiar Bloch oscillation with a large am-

FIG. 1. The squared modulusucsx,tdu2 of the wave function for
g=0 shows the familiar Bloch oscillations.

FIG. 2. Expectation values of the positionkxlt and widthDxt for
the wave function shown in Fig. 1.

FIG. 3. Same as Fig. 1, but for
a nonlinear interaction g= +5
sleftd and −5srightd.
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plitude because of the weak field. Let us recall that the re-
gion over which the Bloch oscillation extends can be esti-
mated asD /F<200<3232p within the tilted band picture,
whereD=0.9994 is the width of the dispersion relationEskd
in the field-free case. The numerical results confirm this es-
timate as the top of Fig. 2 shows. As expected for such an
initially wide distribution in coordinate space, the width of
the wave packet remains practically constant, varying peri-
odically with a relative amplitude of about 10−3 sFig. 2 bot-
tomd.

Let us now discuss the influence of a nonlinearity, fixing
for the moment the nonlinear parameter atg=5 srepulsive
interactiond and g=−5 sattractive interactiond. From Fig. 3
one can observe that the Bloch oscillations continue to exist,
at least for the short times up tot<10TB shown in the figure.
In addition to the well known localization ofucsx,tdu2 in the
minima of the cosine potential, one observes a further fila-
mentation which is particularly pronounced for an attractive
interaction. As shown in Fig. 4, the amplitude of the oscilla-
tion decreases and the oscillation in the width strongly in-
creases.

Also shown in Figs. 4 and 5 is the time dependence of the
width Dxt of the wave packet. In sharp contrast to the tiny
oscillations of the width in the linear casessee Fig. 2d we
find here very pronounced oscillations which are rapidly
growingsas already described by Holthausf16gd. Such a phe-
nomenon is known asbreathingand is exhibited in the linear
system by wave packets that are initially strongly localized

in coordinate spacef1,25g. Note that the oscillations of the
width Dxt for a repulsive and attractive nonlinearity are op-
posite to each other.

For a stronger nonlinearityg=10, as illustrated in Figs. 6
and 7, the Bloch oscillations are damped more strongly.
However, the oscillation does not fade completely but shows
a revival with a smaller amplitude after a shrinking to ap-
proximately two lattice periods. A corresponding behavior is
observed for the width, where the breathing amplitude of the
wave function first grows fast up to a time of about eight
Bloch periods. After this time, the width remains limited and
oscillates in the interval from 31 to 35 lattice periods.

Furthermore, the oscillation ofkxlt shows phase jumps
that can be seen, e.g., in the inset of Fig. 6 att<14TB. A
similar behavior has also been described inf16g. This phase
jump coincides with a minimum in the amplitude. These phe-
nomena can be understood in terms of an expansion in
Wannier-Stark basis functions as explained in the next sec-
tion.

III. WANNIER-STARK BASIS SET EXPANSION

An alternative approach to a direct numerical integration
of the GPE is an expansion in an adequate discrete basis such

FIG. 5. Same as Fig. 4, but for an attractive nonlinearityg
=−5.

FIG. 6. Expectation valuekxlt of the position and widthDxt for
a repulsive nonlinearityg= +10. The inset shows a magnification of
the time interval between 8TB and 16TB.

FIG. 7. Width Dxt of the wave packet shown in Fig. 6 for a
repulsive nonlinearityg= +10.

FIG. 4. Expectation values of the positionkxlt and widthDxt for
the wave function shown in Fig. 3 for a repulsive nonlinearityg
= +5.
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as for example the ground states of single potential wells
f13,26g. In this work we adopt a different approach, follow-
ing f14,18g, and expand the wave function in the resonance
eigenstates of the linear system, the so-called Wannier-Stark
statesCa,nsxd which are eigenstates of the linear Hamil-
tonianH0:

H0Ca,nsxd = Ea,nCa,nsxd, s4d

where a is the ladder index andn is the site index. The
energies form the Wannier-Stark ladder

Ea,n = Ea,0 + 2pFn. s5d

The Wannier-Stark states extend over several periods of the
potentialssee remarkf27g and reviewf5g for more informa-
tiond. This approach has proven to be extremely convenient
to describe the dynamics in tilted optical lattices in the linear
case, especially for higher field strengthsf5,23g.

Up to Sec. V, we will restrict the discussion to small field
strengthsF. Then one can neglect decay and Landau-Zener
tunneling and use the lowest laddera=0 only; henceforth
the indexa is omitted. Also neglecting decay, the imaginary
part of the energyEn is set to zero. Plugging the expansion
csx,td=omcmstdCmsxd into the GPEs1d leads to a set of
coupled ordinary differential equations:

i"o
m

ċmCm = o
m

sE0 + 2pFmdcmCm + go
klm

ck
*clcmCk

*ClCm.

s6d

The energyE0 only leads to a global phase factor and hence
is omitted in the following. The Wannier-Stark statesCn are
orthogonal to their left eigenstatesCm

L for mÞn. Neverthe-
less, since we neglect the resonance properties of the system
we can identify left and right eigenvectors, i.e., assume that
H0 is Hermitian. So multiplying Eq.s6d by Cn

* and integrat-
ing yields

i"ċn = 2pFncn + go
klm

xklm
n ck

*clcm, s7d

with the coupling tensor

xklm
n =E Cn

*sxdCk
*sxdClsxdCmsxddx, s8d

which is symmetric under the exchange of its first and last
two indices. Due to the discrete translational invariance of
the Wannier-Stark statesCnsxd=C0sx−2pnd one finds

i"ċn = 2pFncn + go
klm

xklmck+n
* cl+ncm+n, s9d

definingxklm;xklm
0 .

Though not suited for direct numerical calculations be-
cause of the triple infinite sum, Eq.s9d provides a basis for
further approximations. In the following we will reduce it to
a simple integrable model, which nevertheless captures im-
portant features of the dynamics. To this end we decompose
the coefficientscn into phase and amplitude

cn = Îrne
iwn. s10d

The imaginary parts of the coupling tensorxklm are negli-
gible and so one arrives at the coupled equations

"ẇn = − 2pFn − grno
klm

xklmSrk+nrl+nrm+n

rn
3 D1/2

3 cosswl+n + wm+n − wk+n − wnd, s11d

"ṙn = 2grn
2o

klm

xklmSrk+nrl+nrm+n

rn
3 D1/2

3 sinswl+n + wm+n − wk+n − wnd. s12d

If the initial state is broad, populating about 20 wells, the
amplitudesrnst=0d are small. Because ofṙn,rn

2, this im-
plies that the amplitudesrn change only slowly in time com-
pared to the phaseswn and can be assumed to be constant.

Furthermore we reduce the expression forẇn to the most
important contributions. Numerically examining thexklm
shows that the dominating terms arex000, xkk0=xk0k, and
x0kk, which is not unexpected considering Eq.s8d. It can also
be arguedsand verified numericallyd that the terms in Eq.
s11d that have a nonzero argument of the cosine have little
importance, as their contributions average out. This leaves
the terms includingx000 andxkk0=xk0k and finally leads to

"ẇn = − 2pFn − ggnrn s13d

with

gn = x000+ 2o
kÞ0

xk0k
rn+k

rn
. s14d

Equationss13d are integrated to

rnstd = rns0d, wnstd = vnt, s15d

with

"vn = − 2pFn − ggnrn. s16d

Note that this solution is exact forg=0. Numerical calcula-
tions show that one can safely neglect the dependence ofgn
on the indexn and setgn<g. For the given parameters Eq.
s14d yields gnùg0=0.278. However, the best fit with the
results from a wave packet propagation are obtained forg
=0.15.

This admittedly quite crude approximation shows very
good agreement with an exact numerical solution. In Figs. 8
and 9 the approximations15d is compared with the results
obtained by a wave packet propagation using the split-
operator methodf24g. A normalized Gaussian initial distribu-
tion with coefficients

cn , e−n2/4s2
, s = s̃/2p = 20, s17d

is used which closely resembles a Gaussian wave packet pro-
jected onto the lowest Bloch band in configuration space.
The dynamics for a moderate nonlinearityg=1 is well de-
scribed by Eq.s15d, only the growth of the width is some-
what underestimated. Forg=10 the approximations15d be-
comes less accurate. In particular it overestimates the revival
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of the Bloch oscillation and underestimates the growth of the
width of the wave packet. However, it still captures the im-
portant features at least qualitatively: the decay and revival
of the oscillations, the phase jump aroundt=14TB and the
breathing of the wave function.

The systematic growth of the width of the wave packet is
mainly due to a broadening of the amplitude distributionrn
and therefore clearly not included in approximations15d.
Similarly, the filamentation of the wave packetscf. Fig. 3d is
also due to the dynamics of the amplitude distributionrn and
hence not included in our simple model.

To discuss the broadening of the wave function we briefly
reintroduce the time dependence of thern. Again we reduce
the triple sum to keep the calculations feasible. Note that the
terms are oscillating due to the sine. Using approximation
s15d we see that fork= l +m the terms proportional toF in the
argument of the sine cancel and hence the sine oscillates
most slowly. Thus we approximate the dynamics of the am-
plitudesrn by

"ṙn < 2grn
2o

l,m
xl+m,l,mSrl+m+nrl+nrm+n

rn
3 D1/2

3 sinswl+n + wm+n − wl+m+n − wnd, s18d

where the sum can be truncated atul u , umu=30. Equations18d
for r and Eq.s13d for w are now solved numerically with
g=0.15 and the initial conditions17d. The results displayed
in Fig. 10 show that this model captures the growth of the
width of the wave packet. We will, however, not go into
details here and return to the approximations15d to discuss
the dynamics of Bloch oscillations.

IV. ANALYSIS OF THE DYNAMICAL BEHAVIOR

Further insight can be provided by a closer look at the
dynamics of the wave function in momentum space. This can
be achieved with the approximate time evolution of the ex-
pansion coefficientscn derived in the previous section.

First we briefly reconsider the linear case. Forg=0 Eqs.
s15d reduce to

rnstd = rnst = 0d andwnstd = − 2pFnt/". s19d

The Wannier-Stark functionsf27g Cn are related by a spatial
translation Cnsxd=C0sx−2pnd. In momentum space this
reads

Cnskd = e−i2pnkC0skd s20d

and the time evolution of the wave function in momentum
space is

csk,td = C0skdo
n

Îrn expf− i2pnsk + Ft/"dg

, C0skdC̃sk + Ft/"d, s21d

neglecting a global phase. Thus the wave function is the
product of a time-independent functionC0skd and the dis-

crete Fourier transformationC̃skd of the amplitudesÎrn,
evaluated at the pointk+Ft /".

FIG. 9. As Fig. 8, but for a strong nonlinearityg=10.

FIG. 10. Bloch oscillations for a strong nonlinearityg=10. The
propagation was done with the split-operator methodsdashed lined
and with approximations18d ssolid lined.

FIG. 8. Bloch oscillations: Expectation value of positionkxlt of
the wave packet for a moderate nonlinearityg=1. The propagation
was done with the split-operator methodsdashed lined respectively
with approximations15d ssolid lined.
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The functionC̃skd is periodic in momentum space:C̃sk
+nd=C̃skd for nPZ. Thus the functionC̃sk+Ft /"d is peri-
odic in time with the Bloch periodTB=" /F. For a broad
Gaussian distribution of the amplitudesrn the discrete Fou-

rier transformC̃skd is a comb function with narrow peaks at
k=n.

So one arrives at a simple view of the dynamics in mo-

mentum space: The comb functionC̃skd moves uniformly
under the envelopeC0skd, as illustrated in Fig. 11. In coor-
dinate space this periodic motion appears as a Bloch oscilla-
tion f1g.

In the nonlinear case one has to evaluate

csk,td = C0skdo
n

Îrn exph− if2pnk− wnstdgj = C0skdC̃sk,td

s22d

instead of Eq.s21d. The time evolution of the phases is ap-
proximated according to Eq.s15d:

wnstd = vnt with "vn = − 2pFn − ggrn, s23d

and the amplitudes are assumed to be Gaussian

rnstd = rn , e−n2/2s2
. s24d

As in the linear case, the static field term −2pFn in Eq. s23d
for the frequency leads to a uniform motion of the function

C̃sk,td in momentum space. The nonlinear term −ggrn leads
to a dephasing of the coefficientscn and broadens the Fourier

transformC̃sk,td. This dephasing causes a damping of the
Bloch oscillations in coordinate space.

The oscillations of the widthDxt, the breathing, can also
be understood with this approach. In the linear case such
breathing occurs for wave functions that are initially strongly
localized in coordinate space and thus have a broad momen-
tum distribution. As explained, the nonlinear term leads to a

broadening of the functionC̃sk,td and hence to a broadening
of the wave function in momentum space and breathing in

coordinate space. For even longer times the coefficients
dephase completely and the oscillations in both the position
and the width are damped.

In order to understand the revivals and the phase jumps in
the oscillations ofkxlt, we need to look at the time evolution

of the functionC̃sk,td. In Fig. 12 the functionuC̃sk,tdu for
g=10 is plotted at timest=0, t=6TB, t=12TB, and t=18TB.
The dynamics of the expansion coefficients was calculated
with Eq. s15d fEq. s23dg. One observes that the initially nar-
row peaks are broadened and an oscillatory structure devel-
ops with two maxima at the edges of the band populated by

uC̃sk,tdu. These maxima eventually merge, leading to a re-
vival of the Bloch oscillations. The new maximum after the
merger is displaced byDk=0.5 in comparison to the linear
case and hence the phase of the Bloch oscillations is re-
versed. This maximum broadens again, leading to a periodic
breakdown and revival. The phase of the Bloch oscillations
is reversed after each breakdown and the amplitudes of the
revivals decrease. However, these further revivals are ob-
served only within the approximations15d andnot in a wave
packet propagation.

Now we consider the time dependence of the expectation
values of position and width. These quantities can be evalu-
ated analytically in the linear caseg=0 using a tight-binding
approximationf1,25g. In this approximation the expectation
value of the position oscillates harmonically with the Bloch
frequencyvB,

kxlt = x̄ + A cossvBtd s25d

and amplitude

A =
D

2F
e−2p2Dp2/"2

, s26d

where Dp is the width in momentum space andD is the
bandwidth of the dispersion relationEskd in the field-free
case. For a small nonlinearity the broadening of the wave
function in momentum space due to the nonlinearity happens

FIG. 11. Bloch oscillations in momentum space. The wave func-
tion ucsk,tdu shown fort=0 ssolid lined moves uniformly under the
envelope of the Wannier-Stark functionuC0skdu sdashed lined.

FIG. 12. Time evolution of the functionC̃sk,td in Eq. s22d for

g=10. The functionC̃ is scaled asC̃s0,0d=1.
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slowly compared to the Bloch oscillations. Thus we can as-
sume thatkxlt still executes damped harmonic oscillations
with the amplitudes26d, where the damping is determined by
the slowly increasing momentum widthDpt.

According to Eq.s22d we can estimate the momentum

width Dpt by the width of the peaks of the functionC̃sk,td.
For a broad distribution of the coefficientscn, as assumed
throughout this paper, the sum in Eq.s22d can be replaced by
an integral:

C̃sk,td =E
−`

+`

Îrn exph− if2pnk− wnstdgjdn. s27d

This expression is valid foruku,0.5, otherwiseC̃sk,td is de-
termined by its periodicity. The amplitudesrn and phases
wnstd are approximated by Eq.s15d, where the amplitudesrn

are normalized as

rn =
1

Î2ps2
e−n2/2s2

. s28d

We note thatC̃sk,td depends on the momentumk only

through the expressionk̃=k+Ft /", reflecting the uniform
motion in momentum space due to the static field:

C̃sk̃d =
1

Î4 2ps2E
−`

+`

e−n2/4s2
e−is2pk̃n+be−n2/2s2

ddn s29d

with b=ggt/ sÎ2ps"d.
The integrals27d can be evaluated using the stationary

phase approximation. However, there exists only a finitek̃

interval for which stationary points exist. Foruk̃u. ukcu with

kc =
b

2pse1/2 s30d

the integral vanishes in the simple stationary phase approxi-

mation f30g. For uk̃u, ukcu one obtains

C̃sk,td < S2ps2

b2 D1/4S eiz+

Î1 − z+

+
eiz−

Î1 − z−
D , s31d

wherez± are the two solutions of the equation

ze−z = s2psk̃/bd2 s32d

and the abbreviationsz±=−2psk̃sz±
+1/2+z±

−1/2d were used. As

an example the functionuC̃sk,tdu is plotted in Fig. 13 forgt
=90TB andg=0.15.

Estimating the momentum width asDp<"ukcu one arrives
at

Dpt <
uggu

s2pd3/2s2e1/2t. s33d

Thus the damped Bloch oscillations in coordinate space are
described by

kxlt < x̄ +
D

2F
expS−

g2g2t2

4pe"2s4DcossvBtd s34d

according to Eq.s25d. The amplitude decreases exponentially
with −g2t2 in agreement with the estimate given inf13g.

Furthermore we can calculate approximately the time up
to the first rephasing of the coefficients and thus the first
revival of the Bloch oscillations. This revival occurs if the

outer peaks ofC̃sk,td meet atk=n+1/2,nPZ, as illustrated
in Fig. 12. Therefore the first rephasing and revival occurs
for kc=0.5 which yields a revival time

trev <
s2pd3/2e1/2"s2

2uggu
. s35d

For g=10 andg=0.15 one obtains

trev < 17TB, s36d

in reasonable agreement with the revival of Bloch oscilla-
tions observed numerically for the wave packet propagation
shown in Fig. 6.

For very long times the coefficientscn dephase com-
pletely. We can therefore estimate the position expectation
value by approximating the wave function as an incoherent
sum of the basis states. Assuming that the amplitudesrn are
constant in time according to Eq.s13d one has

kxl = o
n

rnkCnuxuCnl. s37d

Using the translational properties of the Wannier-Stark states
scf. f5gd one arrives at

kxl` < kC0uxuC0l + 2po
n

nrn. s38d

The amplitudes of the initial states17d are symmetric around
n=0 and hence this approximation yieldskxl`<kC0uxuC0l
=−10.532p. This estimation fairly agrees with the numeri-
cal results displayed in Fig. 6. As argued above, the system-
atic growth of the width of the wave packet is mainly due to
a broadening of the amplitude distributionrn and hence can-
not be explained using the simple model discussed here.

FIG. 13. FunctionuC̃sk,tdu fEq. s27dg for gt=90TB andg=0.15.
The integral was evaluated numericallyssolid lined and using the
stationary phase methodsdashed lined.
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V. STRONG STATIC FIELD AND DECAY

An expansion into Wannier-Stark resonances is also very
helpful in order to understand the dynamics and decay in
strong static fields. In the following we will discuss the dy-
namics for the parameters"=3.3806 andF=0.0661, corre-
sponding to the experiment of Anderson and Kasevichf7g. A
detailed discussion of this experiment in terms of Wannier-
Stark resonances, but neglecting the nonlinearity, can be
found in f23g. Thus we will only briefly discuss the influence
of the nonlinearity on the pulse shape.

For a field strength ofF=0.0661 decay cannot be ne-
glected any longer. One has to take into account that the
resonance states eventually diverge exponentially forx or k
→−`. Hence, a wave function of the forms22d is not nor-
malizable. Nevertheless, the restriction to the ground
Wannier-Stark ladder is still sufficient.

As described inf23g ssee also remarkf27gd one can solve
the problem of normalization by introducing truncated reso-
nance states defined by

Cn
Kskd = Qsk + KdCnskd. s39d

The Heaviside functionQsk+Kd truncates the resonances at
−K. Provided thatuKu is large enough, the time evolution of
these states is given by

Cn
Ksk,td = Qsk + K + Ft/"dCnsk,td. s40d

If the support of the initial wave function is bounded in
momentum space byuku, uKu, we can expand it into a basis
of truncated resonances. The dynamics of this state is then
given by

csk,td = Qsk + K + Ft/"dC0sk,tdC̃sk,td, s41d

with C0sk,td=exps−iE0t /"dC0skd instead of Eq.s22d.
For a coherent initial distribution of a sufficient width

cn,expf−n2/ s2sd2g with s@1, the function C̃sk,td is a
comb function in the linear case, leading to a pulsed output.

The pulse shape given by the functionC̃ broadens and de-
forms under the influence of the nonlinearity as described in
the previous sectionscf. Fig. 12d. This deformation is di-
rectly observable in the pulsed output.

This is demonstrated in Fig. 14 for a coherent initial dis-
tribution cn,exps−n2/4s2d with a width of s=15/2. The
time evolution was again calculated using a split-operator
method. The wave functionucsk,tdu2 is plotted at a timet
=9.1TB for four different values of the nonlinearityg=0, −5,
5, and 10. The broadening of the peaks with increasingugu
and the characteristic double-peak structure can clearly be
seen.

The resulting wave function in coordinate space is a se-
quence of pulses at the points

x = x0 −
F

2
st + jTBd2, s42d

with x0=E0/F and j PZ. These pulses are accelerated just
like classical particles in a static field, as observed in the
experimentf7g. The pulse shape is approximately described

by the discrete Fourier transform ofC̃ f23g. Thus one also

finds a characteristic deformation of the pulses in coordinate
space.

VI. CONCLUSIONS

In this article we first investigated Bloch oscillations of
BECs by numerical solutions of the Gross-Pitaevskii equa-
tion and demonstrated a revival of Bloch oscillations after an
initial breakdown. These findings have been further analyzed
via discretizing the GPE in a Wannier-Stark basis set expan-
sion. Using these resonance states one can easily compare
the linear and nonlinear cases. This comparison leads to a
better understanding of the nonlinear features of BECs in
optical lattices. It allows us to derive a simple integrable
model s15d which can explain the nonlinear phenomena of
breakdown and revival of the Bloch oscillations. This ap-
proach, unlike the tight-binding approximation, works as
well for strong Stark fields.

Many interesting questions are left open and deserve fu-
ture studies, as for example the following.sad The effects
induced by the nonlinearity for Bloch oscillations in two-
dimensional lattices, where recently novel effects concerning
the extreme sensitivity on the field direction with respect to
the lattice have been foundf3,28g. sbd For BECs in tilted
optical lattices a classically chaotic behavior has been re-
portedf14g. These interesting findings deserve further stud-
ies, for example the correspondence of the emergence of
chaos with the loss of stability of the GPE solutions.scd It is
an entirely open question how the nonlinearity influences the
behavior of a driven Wannier-Stark system, e.g., the stabiliz-
ing phenomena found for an additional harmonic driving
f5,29g.
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FIG. 14. Pulsed output for different nonlinearitiesg=0, −5, 5,
and 10sfrom top to bottomd. The wave functionucsk,tdu2 is dis-
played fort=9.1TB.
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